The Statistics of Intersections of Curves on Surfaces

Rachel Zhang

Mentor: Professor Moira Chas at SUNY

PRIMES Conference
May 16, 2015

Surfaces

Pair of Pants

Torus with One Boundary

Surfaces

Deformation

Surfaces

Deformation

Surfaces and Words

Surfaces and Words
Pair of Pants

Surfaces and Words
Pair of Pants

Surfaces and Words

 Pair of Pants

Surfaces and Words

 Pair of Pants

Surfaces and Words

 Pair of Pants

Surfaces and Words Pair of Pants

Surface Word $=a A b B$

Surfaces and Words

Torus with One Boundary

Surface Word $=a b A B$

Curves on a Surface

 HomotopyTwo curves are homotopic if one can be deformed into the other.

Curves on a Surface

Planar Model

Curves on a Surface

 Curve Words and Length

Curve Word $=a$
Curve Length $=1$

Curves on a Surface

Curve Words and Length

Curve Word $=a$
Curve Length $=1$

Curve Word $=a b b$ Curve Length $=3$

Curves to Study

- cyclicly reduced words

Intersections of Curves

Intersections of Curves

Intersections of Curves

$i(a, a b b)=2$

Distribution of Intersections

- Fix a curve ω on a surface S.
- Let n be a positive integer.
- We want to study the distribution of the number of intersections of curves of length n with ω.

Extended Planar Model

Curve abb on Torus abAB

Linked Pairs

$a b$ and $a b b$ on abAB

Linked Pairs

$a b$ and $a b b$ on abAB

Linked Pairs

$a b$ and $a b b$ on abAB

Linked pair $=(a b a b a, b b a b b)$

Mean Number of Intersections

■ After determining the complete set of all linked pairs, we can find the probability of each occuring at a specific location in a curve word.
■ For example, $P(a b a b a)=\frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$.

- Summing all these probabilities and multiplying by n gives the expected number of intersections of ω and a curve of length n.

Conjecture

The limiting distribution of the number of intersections of ω with curves of length n approaches a Gaussian distribution when normalized.

What's next?

What's next?

- standard deviation of distribution of $i(\omega, c)$

What's next?

- standard deviation of distribution of $i(\omega, c)$
- relationship between self intersection of ω and the distribution of $i(\omega, c)$

Acknowledgments

- Thanks to my mentor Professor Moira Chas for giving me this project and working with me every week.
■ Thanks also to PRIMES and all people working with it for providing me with this experience.

